Fluorescence Lifetimes of NIR-Emitting Molecules with Excited-State Intramolecular Proton Transfer

Author:

Li YonghaoORCID,Dahal DipendraORCID,Pang Yi

Abstract

Molecular probes based on the excited-state intramolecular proton-transfer (ESIPT) mechanism have emerged to be attractive candidates for various applications. Although the steady-state fluorescence mechanisms of these ESIPT-based probes have been reported extensively, less information is available about the fluorescence lifetime characteristics of newly developed NIR-emitting dyes. In this study, four NIR-emitting ESIPT dyes with different cyanine terminal groups were investigated to evaluate their fluorescence lifetime characteristics in a polar aprotic solvent such as CH2Cl2. By using the time-correlated single-photon counting (TCSPC) method, these ESIPT-based dyes revealed a two-component exponential decay (τ1 and τ2) in about 2–4 nanoseconds (ns). These two components could be related to the excited keto tautomers. With the aid of model compounds (5 and 6) and low-temperature fluorescence spectroscopy (at −189 ℃), this study identified the intramolecular charge transfer (ICT) as one of the major factors that influenced the τ values. The results of this study also revealed that both fluorescence lifetimes and fractional contributions of each component were significantly affected by the probe structures.

Funder

NIH

University of Akron

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3