The Role of Intraligand Charge Transfer Processes in Iridium(III) Complexes with Morpholine-Decorated 4′-Phenyl-2,2′:6′,2″-terpyridine

Author:

Palion-Gazda Joanna1ORCID,Kwiecień Aleksandra1,Choroba Katarzyna1ORCID,Penkala Mateusz1ORCID,Kryczka Anna1,Machura Barbara1ORCID

Affiliation:

1. Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland

Abstract

To investigate the impact of the electron-donating morpholinyl (morph) group on the ground- and excited-state properties of two different types of Ir(III) complexes, [IrCl3(R-C6H4-terpy-κ3N)] and [Ir(R-C6H4-terpy-κ3N)2](PF6)3, the compounds [IrCl3(morph-C6H4-terpy-κ3N)] (1A), 4[Ir(morph-C6H4-terpy-κ3N)2](PF6)3 (2A), [IrCl3(Ph-terpy-κ3N)] (1B) and [Ir(Ph-terpy-κ3N)2](PF6)3 (2B) were obtained. Their photophysical properties were comprehensively investigated with the aid of static and time-resolved spectroscopic methods accompanied by theoretical DFT/TD-DFT calculations. In the case of bis-terpyridyl iridium(III) complexes, the attachment of the morpholinyl group induced dramatic changes in the absorption and emission characteristics, manifested by the appearance of a new, very strong visible absorption tailing up to 600 nm, and a significant bathochromic shift in the emission of 2A relative to the model chromophore. The emission features of 2A and 2B were found to originate from the triplet excited states of different natures: intraligand charge transfer (3ILCT) for 2A and intraligand with a small admixture of metal-to-ligand charge transfer (3IL–3MLCT) for 2B. The optical properties of the mono-terpyridyl iridium(III) complexes were less significantly impacted by the morpholinyl substituent. Based on UV–Vis absorption spectra, emission wavelengths and lifetimes in different environments, transient absorption studies, and theoretical calculations, it was demonstrated that the visible absorption and emission features of 1A are governed by singlet and triplet excited states of a mixed MLLCT-ILCT nature, with a dominant contribution of the first component, that is, metal-ligand-to-ligand charge transfer (MLLCT). The involvement of ILCT transitions was reflected by an enhancement of the molar extinction coefficients of the absorption bands of 1A in the range of 350–550 nm, and a small red shift in its emission relative to the model chromophore.

Funder

Research Excellence Initiative of the University of Silesia in Katowice

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3