Recent Advances of Modified Ni (Co, Fe)-Based LDH 2D Materials for Water Splitting

Author:

Li Chenguang1ORCID,Bao Yupeng1,Liu Enzhou1,Zhao Binran1,Sun Tao1

Affiliation:

1. School of Chemical Engineering, Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an 710069, China

Abstract

Water splitting technology is an efficient approach to produce hydrogen (H2) as an energy carrier, which can address the problems of environmental deterioration and energy shortage well, as well as establishment of a clean and sustainable hydrogen economy powered by renewable energy sources due to the green reaction of H2 with O2. The efficiency of H2 production by water splitting technology is intimately related with the reactions on the electrode. Nowadays, the efficient electrocatalysts in water splitting reactions are the precious metal-based materials, i.e., Pt/C, RuO2, and IrO2. Ni (Co, Fe)-based layered double hydroxides (LDH) two-dimensional (2D) materials are the typical non-precious metal-based materials in water splitting with their advantages including low cost, excellent electrocatalytic performance, and simple preparation methods. They exhibit great potential for the substitution of precious metal-based materials. This review summarizes the recent progress of Ni (Co, Fe)-based LDH 2D materials for water splitting, and mainly focuses on discussing and analyzing the different strategies for modifying LDH materials towards high electrocatalytic performance. We also discuss recent achievements, including their electronic structure, electrocatalytic performance, catalytic center, preparation process, and catalytic mechanism. Furthermore, the characterization progress in revealing the electronic structure and catalytic mechanism of LDH is highlighted in this review. Finally, we put forward some future perspectives relating to design and explore advanced LDH catalysts in water splitting.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Qin Chuangyuan project of Shaanxi Province

National innovation and entrepreneurship training program for college students

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3