Particle Size Effect of Cyetpyrafen Formulation in the Pesticide Transmission Process and Its Impact on Biological Activity

Author:

Yu Lu12ORCID,Liu He1,Yu Miao1,Zhang Qi1ORCID,Chou Jingyu2,Wu Yuanhua1

Affiliation:

1. Plant Protection College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang 110866, China

2. State Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., No. 8 Shenliao East Road, Shenyang 110021, China

Abstract

Cyetpyrafen is a compound that lacks inherent uptake and systemic translocation activity. If mites do not come into direct contact with the pesticide solution on leaves, the efficacy cannot be achieved. Controlling the particle size can potentially play a crucial role in the manifestation of efficacy. In this study, high-throughput formulation technology was used to systematically screen a large number of adjuvants to obtain cyetpyrafen formulations. The particle size of the active ingredient in the formulation was measured. By examining the dynamic light scattering and contact angle, we simulated the actual process of the efficacy transmission of cyetpyrafen formulations against Tetranychus cinnabarinus. Our results showed that the activity of cyetpyrafen increases as the particle size decreases, suggesting that reducing the particle size can enhance the coverage and deposition on crop leaves, and further improve the dispersion efficiency and enhance spreading capabilities. Furthermore, controlling the particle size at 160 nm resulted in an LC50 value of 0.2026, which is approximately double than that of the commercial product. As a novel pesticide for mites, our study presents the most effective cyetpyrafen formulation in practice. Our findings provide valuable insights into controlling other mite species that pose a threat to agricultural products.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3