Abstract
Microalgae have evolved into a promising sustainable source of a wide range of compounds, including protein, carbohydrates, biomass, vitamins, animal feed, and cosmetic products. The process of extraction of intracellular composites in the microalgae industry is largely determined by the microalgal species, cultivation methods, cell wall disruption techniques, and extraction strategies. Various techniques have been applied to disrupt the cell wall and recover the intracellular molecules from microalgae, including non-mechanical, mechanical, and combined methods. A comprehensive understanding of the cell disruption processes in each method is essential to improve the efficiency of current technologies and further development of new methods in this field. In this review, an overview of microalgal cell disruption techniques and an analysis of their performance and challenges are provided. A number of studies on cell disruption and microalgae extraction are examined in order to highlight the key challenges facing the field of microalgae and their future prospects. In addition, the amount of product recovery for each species of microalgae and the important parameters for each technique are discussed. Finally, pulsed electric field (PEF)-assisted treatments, which are becoming an attractive option due to their simplicity and effectiveness in extracting microalgae compounds, are discussed in detail.
Funder
Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献