Modeling and Optimization of Ellagic Acid from Chebulae Fructus Using Response Surface Methodology Coupled with Artificial Neural Network

Author:

Wu Junkai1ORCID,Yang Fan2,Guo Liyang2,Sheng Zunlai23

Affiliation:

1. School of Pharmacy, Quanzhou Medical College, Quanzhou 362011, China

2. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China

3. Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150006, China

Abstract

The dried ripe fruit of Terminalia chebula Retz. is a common Chinese materia medica, and ellagic acid (EA), isolated from the plant, is an important bioactive component for medicinal purposes. This study aimed to delineate the optimal extraction parameters for extracting the EA content from Chebulae Fructus (CF), focusing on the variables of ethanol concentration, extraction temperature, liquid–solid ratio, and extraction time. Utilizing a combination of the response surface methodology (RSM) and an artificial neural network (ANN), we systematically investigated these parameters to maximize the EA extraction efficiency. The extraction yields for EA obtained under the predicted optimal conditions validated the efficacy of both the RSM and ANN models. Analysis using the ANN-predicted data showed a higher coefficient of determination (R2) value of 0.9970 and a relative error of 0.79, compared to the RSM’s 2.85. The optimal conditions using the ANN are an ethanol concentration of 61.00%, an extraction temperature of 77 °C, a liquid–solid ratio of 26 mL g−1 and an extraction time of 103 min. These findings significantly enhance our understanding of the industrial-scale optimization process for EA extraction from CF.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3