Surface Permeability of Membrane and Catalytic Performance Based on Redox-Responsive of Hybrid Hollow Polymeric Microcapsules

Author:

Wu GuangyuORCID,Wang Jingyi,Liu Qi,Lu Ran,Wei Yuhan,Cheng Feng,Han Jiangang,Xing Weinan,Huang Yudong

Abstract

“Smart” polymeric microcapsules with excellent permeability of membranes have drawn considerable attention in scientific and industrial research such as drug delivery carriers, microreactors, and artificial organelles. In this work, hybrid hollow polymeric microcapsules (HPs) containing redox-active gold-sulfide bond were prepared with bovine serum albumin, inorganic metal cluster (AuNCs), and poly(N-isopropylacrylamide) conjugates by using Pickering emulsion method. HPs were transferred from water-in-oil to water-in-water by adding PEGbis(N-succinimidylsuccinate). To achieve redox-responsive membrane, the Au-S bond units incorporated into the microcapsules’ membranes, allowed us to explore the effects of a new stimuli, that is, the redox Au-S bond breaking on the microcapsules’ membranes. The permeability of these hybrid hollow polymeric microcapsules could be sensitively tuned via adding environment-friendly hydrogen peroxide (H2O2), resulting from a fast fracture of Au-S bond. Meanwhile, AuNCs and conjugates could depart from the microcapsules, and enhance the permeability of the membrane. Based on the excellent permeability of the membrane, phosphatase was encapsuled into HPs and p-nitrophenyl phosphate as a substrate. After adding 1 × 10−2 and 1 × 10−4 M H2O2, the catalytic efficiency was nearly 4.06 and 2.22 times higher than that of HPs in the absence of H2O2, respectively. Hence, the unique redox-responsive HPs have potential applications in biocatalytic reaction, drug delivery, and materials as well as in bioscience.

Funder

Jiangsu Planned Projects for Postdoctoral Research Funds

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3