Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya illinoensis) Pericarp Wastes of Different Particle Sizes

Author:

Ngangyo Heya MaginotORCID,Romo Hernández Ana Leticia,Foroughbakhch Pournavab RahimORCID,Ibarra Pintor Luis FernandoORCID,Díaz-Jiménez LourdesORCID,Heya Michel StéphaneORCID,Salas Cruz Lidia RosauraORCID,Carrillo Parra ArtemioORCID

Abstract

Pecan nut (Carya illinoensis) pericarp is usually considered as a waste, with no or low value applications. Its potential as a densified solid biofuel has been evaluated, searching for alternatives to generating quality renewable energy and reducing polluting emissions in the atmosphere, based on particle size, that is an important feedstock property. Therefore, agro-industrial residues from the pecan nut harvest were collected, milled and sieved to four different granulometry: 1.6 mm (N° 12), 0.84 mm (N° 20), 0.42 mm (N° 40), and 0.25 mm (N° 60), used as raw material for biofuel briquette production. The carbon and oxygen functional groups in the base material were investigated by Fourier transform infrared spectroscopy (FTIR) and proximate analyses were performed following international standards, for determining the moisture content, volatile materials, fixed carbon, ash content, and calorific value. For the biofuel briquettes made from base material of different particle sizes, the physical characteristics (density, hardness, swelling, and impact resistance index) and energy potential (calorific value) were determined to define their quality as a biofuel. The physical transformation of the pecan pericarp wastes into briquettes improved its quality as a solid biofuel, with calorific values from around 17.00 MJ/kg for the base material to around 18.00 MJ/kg for briquettes, regardless of particle size. Briquettes from sieve number 40 had the highest density (1.25 g/cm3). Briquettes from sieve number 60 (finest particles) presented the greater hardness (99.85). The greatest susceptibility to swelling (0.31) was registered for briquettes with the largest particle size (sieve number 20). The IRI was 200 for all treatments.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3