Effects of Lysine on the Interfacial Bonding of Epoxy Resin Cross-Linked Soy-Based Wood Adhesive

Author:

Liang Yunyi1,Luo Yonghong1,Wang Yang1ORCID,Fei Tianyang1,Dai Lili1,Zhang Daihui2ORCID,Ma Hongzhi3,Cai Liping1,Xia Changlei1ORCID

Affiliation:

1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China

3. Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Soy protein isolate (SPI) is an attractive natural material for preparing wood adhesives that has found broad application. However, poor mechanical properties and unfavorable water resistance of wood composites with SPI adhesive bonds limit its more extensive utilization. The combination of lysine (Lys) with a small molecular structure as a curing agent for modified soy-based wood adhesive allows Lys to penetrate wood pores easily and can result in better mechanical strength of soy protein-based composites, leading to the formation of strong chemical bonds between the amino acid and wood interface. Scanning electron microscopy (SEM) results showed that the degree of penetration of the S/G/L-9% adhesive into the wood was significantly increased, the voids, such as ducts of wood at the bonding interface, were filled, and the interfacial bonding ability of the plywood was enhanced. Compared with the pure SPI adhesive, the corresponding wood breakage rate was boosted to 84%. The wet shear strength of the modified SPI adhesive was 0.64 MPa. When Lys and glycerol epoxy resin (GER) were added, the wet shear strength of plywood prepared by the S/G/L-9% adhesive reached 1.22 MPa, which increased by 29.8% compared with only GER (0.94 MPa). Furthermore, the resultant SPI adhesive displayed excellent thermostability. Water resistance of S/G/L-9% adhesive was further enhanced with respect to pure SPI and S/GER adhesives through curing with 9% Lys. In addition, this work provides a new and feasible strategy for the development and application of manufacturing low-cost, and renewable biobased adhesives with excellent mechanical properties, a promising alternative to traditional formaldehyde-free adhesives in the wood industry.

Funder

National Key R&D Program of China

Jiangsu Agriculture Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3