Microwave-Assisted One-Pot Lipid Extraction and Glycolipid Production from Oleaginous Yeast Saitozyma podzolica in Sugar Alcohol-Based Media

Author:

Delavault AndréORCID,Ochs Katarina,Gorte Olga,Syldatk Christoph,Durand Erwann,Ochsenreither KatrinORCID

Abstract

Glycolipids are non-ionic surfactants occurring in numerous products of daily life. Due to their surface-activity, emulsifying properties, and foaming abilities, they can be applied in food, cosmetics, and pharmaceuticals. Enzymatic synthesis of glycolipids based on carbohydrates and free fatty acids or esters is often catalyzed using certain acyltransferases in reaction media of low water activity, e.g., organic solvents or notably Deep Eutectic Systems (DESs). Existing reports describing integrated processes for glycolipid production from renewables use many reaction steps, therefore this study aims at simplifying the procedure. By using microwave dielectric heating, DESs preparation was first accelerated considerably. A comparative study revealed a preparation time on average 16-fold faster than the conventional heating method in an incubator. Furthermore, lipids from robust oleaginous yeast biomass were successfully extracted up to 70% without using the pre-treatment method for cell disruption, limiting logically the energy input necessary for such process. Acidified DESs consisting of either xylitol or sorbitol and choline chloride mediated the one-pot process, allowing subsequent conversion of the lipids into mono-acylated palmitate, oleate, linoleate, and stearate sugar alcohol esters. Thus, we show strong evidence that addition of immobilized Candida antarctica Lipase B (Novozym 435®), in acidified DES mixture, enables a simplified and fast glycolipid synthesis using directly oleaginous yeast biomass.

Funder

Bundesministerium für Bildung, Wissenschaft und Forschung

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3