Positive Association between Aqueous Humor Hydroxylinoleate Levels and Intraocular Pressure

Author:

Umeno Aya,Yoshida Yasukazu,Kaidzu SachikoORCID,Tanito MasakiORCID

Abstract

We previously proposed the total assessment of hydroxylinoleates (HODEs) by LC-MS/MS after saponification and reduction of the biologic samples as biomarkers to investigate pathogenesis, disease progression, and prognosis. In this study, HODE levels were estimated in aqueous humor (AH) samples from 63 eyes (41 Japanese subjects; 15 men; mean age, 77.3 ± 6.8 years) with primary open-angle glaucoma (POAG) or cataracts. The correlations between intraocular HODE levels and background parameters, including intraocular pressure (IOP), were analyzed to assess the possible involvement of oxidative stress in glaucoma pathology. Univariate analyses showed that linoleic acid (LA) (p = 0.034) and arachidonic acid (AA) (p = 0.0041) levels were associated negatively with age; 13-(Z,E)-HODE (p = 0.018) and 13-(E,E)-HODE (p = 0.021) were associated positively with IOP; 9-(Z,E)-HODE (p = 0.039), 13-(Z,E)-HODE (p = 0.021), totally assessed-HODE (t-HODE, p = 0.023), LA (p = 0.0080), and AA (p = 0.0051) were higher in eyes with glaucoma than cataract. No gender differences were seen. A mixed-effect regression model showed that higher 13-(Z,E)-HODE (p = 0.0040) and higher t-HODE (p = 0.040) were associated with glaucoma rather than cataracts; and higher levels of 13-(Z,E)-HODE/LA (p = 0.043), 13-(E,E)-HODE/LA (p = 0.042), 13-(Z,E)-HODE (p = 0.0054), and 13-(E,E)-HODE (p = 0.027) were associated with higher IOP. Linoleate-derived oxidation products were quantified successfully in AH samples from patients with glaucoma and cataracts. A free radical oxidation mechanism can be associated with IOP elevation, while enzymatic oxidation may be involved, specifically, in the pathogenesis of POAG.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3