Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine

Author:

Awais Sophia12,Farooq Nouman3,Muhammad Sharmeen Ata3,El-Serehy Hamed A.4ORCID,Ishtiaq Farrah5,Afridi Mehwish2,Ahsan Hina6,Ullah Amin78,Nadeem Tariq9ORCID,Sultana Kishwar10

Affiliation:

1. Department of Pharmacy, Faculty of Pharmacy, University of Lahore, Lahore 54590, Pakistan

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, IBADAT International University, Islamabad 44000, Pakistan

3. Department of Medicine, Nishtar Medical University, Multan 66000, Pakistan

4. Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

5. Cardiac Renal Institute (CaRe Institute), Chubbuck, ID 83202, USA

6. Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 46000, Pakistan

7. Department of Health and Biological Science, Abasyn University Peshawar, Peshawar 25000, Pakistan

8. Institute of Pathology Lab, University of Cologne, 50923 Koln, Germany

9. National Center of Excellence in Molecular Biology, University of The Punjab, Lahore 54000, Pakistan

10. Department of Pharmacy, Iqra University, Islamabad 75500, Pakistan

Abstract

The low water solubility of an active pharmaceutical ingredient (aripiprazole) is one of the most critical challenges in pharmaceutical research and development. This antipsychotic drug has an inadequate therapeutic impact because of its minimal and idiosyncratic oral bioavailability to treat schizophrenia. The main objective of this study was to improve the solubility and stability of the antipsychotic drug aripiprazole (ARP) via forming binary as well as ternary inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβCD) and L-Arginine (LA) as solubility enhancers. Physical mixing and lyophilization were used in different molar ratios. The developed formulations were analyzed by saturation solubility analysis, and dissolution studies were performed using the pedal method. The formulations were characterized by FTIR, XRD, DSC, SEM, and TGA. The results showcased that the addition of HPβCD and LA inclusion complexes enhanced the stability, in contrast to the binary formulations and ternary formulations prepared by physical mixing and solvent evaporation. Ternary formulation HLY47 improved dissolution rates by six times in simulated gastric fluid (SGF). However, the effect of LA on the solubility enhancement was concentration-dependent and showed optimal enhancement at the ratio of 1:1:0.27. FTIR spectra showed the bond shifting, which confirmed the formation of new complexes. The surface morphology of complexes in SEM studies showed the rough surface of lyophilization and solvent evaporation products, while physical mixing revealed a comparatively crystalline surface. The exothermic peaks in DSC diffractograms showed diminished peaks previously observed in the diffractogram of pure drug and LA. Lyophilized ternary complexes displayed significantly enhanced thermal stability, as observed from the thermograms of TGA. In conclusion, it was observed that the preparation method and a specific drug-to-polymer and amino acid ratio are critical for achieving high drug solubility and stability. These complexes seem to be promising candidates for novel drug delivery systems development.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3