Chiral Separation of Oxazolidinone Analogs by Capillary Electrophoresis Using Anionic Cyclodextrins as Chiral Selectors: Emphasis on Enantiomer Migration Order

Author:

Szabó Zoltán-István12ORCID,Boda Francisc1ORCID,Fiser Béla345ORCID,Dobó Máté6,Szőcs Levente7,Tóth Gergő6ORCID

Affiliation:

1. Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania

2. Sz-imfidum Ltd., Lunga nr. 504, 525401 Covasna, Romania

3. Higher Education and Industrial Cooperation Centre, University of Miskolc, Egyetemváros, H-3515 Miskolc, Hungary

4. Ferenc Rákóczi II. Transcarpathian Hungarian Institute, 90200 Beregszász, Transcarpathia, Ukraine

5. Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-149 Łódź, Poland

6. Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary

7. Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary

Abstract

Comparative chiral separations of enantiomeric pairs of four oxazolidinone and two related thio-derivatives were performed by capillary electrophoresis, using cyclodextrins (CDs) as chiral selectors. Since the selected analytes are neutral, the enantiodiscrimination capabilities of nine anionic CD derivatives were determined, in 50 mM phosphate buffer pH = 6. Unanimously, the most successful chiral selector was the single isomeric heptakis-(6-sulfo)-β-cyclodextrin (HS-β-CD), which resulted in the highest enantioresolution values out of the CDs applied for five of the six enantiomeric pairs. The enantiomer migration order (EMO) was the same for two enantiomeric pairs, irrespective of the CD applied. However, several examples of EMO reversals were obtained in the other cases. Interestingly, changing from randomly substituted, multi-component mixtures of sulfated-β-CD to the single isomeric chiral selector, enantiomer migration order reversal occurred for two enantiomeric pairs and similar observations were made when comparing heptakis-(2,3-di-O-methyl-6-O-sulfo)-β-CD, (HDMS-β-CD) with HS-β-CD. In several cases, cavity-size-dependent, and substituent-dependent EMO reversals were also observed. Minute differences in the structure of the analytes were also responsible for several cases of EMO reversal. The present study offers a complex overview of the chiral separation of structurally related oxazolidinones, and thio-analogs, highlighting the importance of the adequate choice of chiral selector in this group of compounds, where enantiomeric purity is of utmost importance.

Funder

University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3