Modeling Peptide–Protein Interactions by a Logo-Based Method: Application in Peptide–HLA Binding Predictions

Author:

Doytchinova Irini1ORCID,Atanasova Mariyana1ORCID,Fernandez Antonio2,Moreno F. Javier3ORCID,Koning Frits4ORCID,Dimitrov Ivan1ORCID

Affiliation:

1. Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria

2. European Food Safety Authority, 43126 Parma, Italy

3. Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain

4. Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands

Abstract

Peptide–protein interactions form a cornerstone in molecular biology, governing cellular signaling, structure, and enzymatic activities in living organisms. Improving computational models and experimental techniques to describe and predict these interactions remains an ongoing area of research. Here, we present a computational method for peptide–protein interactions’ description and prediction based on leveraged amino acid frequencies within specific binding cores. Utilizing normalized frequencies, we construct quantitative matrices (QMs), termed ‘logo models’ derived from sequence logos. The method was developed to predict peptide binding to HLA-DQ2.5 and HLA-DQ8.1 proteins associated with susceptibility to celiac disease. The models were validated by more than 17,000 peptides demonstrating their efficacy in discriminating between binding and non-binding peptides. The logo method could be applied to diverse peptide–protein interactions, offering a versatile tool for predictive analysis in molecular binding studies.

Funder

European Food Safety Authority

Science and Education for Smart Growth Operational Program

European Structural and Investment funds

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3