One-Pot Radiosynthesis of [18F]Anle138b—5-(3-Bromophenyl)-3-(6-[18F]fluorobenzo[d][1,3]dioxol-5-yl)-1H-pyrazole—A Potential PET Radiotracer Targeting α-Synuclein Aggregates

Author:

Orlovskaya Viktoriya V.1,Fedorova Olga S.1,Viktorov Nikolai B.2ORCID,Vaulina Daria D.1ORCID,Krasikova Raisa N.1ORCID

Affiliation:

1. N.P. Bechtereva Institute of the Human Brain, Russian Academy of Science, 197376 St. Petersburg, Russia

2. St. Petersburg State Technological Institute, Technical University, 190013 St. Petersburg, Russia

Abstract

Availability of PET imaging radiotracers targeting α-synuclein aggregates is important for early diagnosis of Parkinson’s disease and related α-synucleinopathies, as well as for the development of new therapeutics. Derived from a pyrazole backbone, 11C-labelled derivatives of anle138b (3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole)—an inhibitor of α-synuclein and prion protein oligomerization—are currently in active development as the candidates for PET imaging α-syn aggregates. This work outlines the synthesis of a radiotracer based on the original structure of anle138b, labelled with fluorine-18 isotope, eminently suitable for PET imaging due to half-life and decay energy characteristics (97% β+ decay, 109.7 min half-life, and 635 keV positron energy). A three-step radiosynthesis was developed starting from 6-[18F]fluoropiperonal (6-[18F]FP) that was prepared using (piperonyl)(phenyl)iodonium bromide as a labelling precursor. The obtained 6-[18F]FP was used directly in the condensation reaction with tosylhydrazide followed by 1,3-cycloaddition of the intermediate with 3′-bromophenylacetylene eliminating any midway without any intermediate purifications. This one-pot approach allowed the complete synthesis of [18F]anle138b within 105 min with RCY of 15 ± 3% (n = 3) and Am in the range of 32–78 GBq/µmol. The [18F]fluoride processing and synthesis were performed in a custom-built semi-automated module, but the method can be implemented in all the modern automated platforms. While there is definitely space for further optimization, the procedure developed is well suited for preclinical studies of this novel radiotracer in animal models and/or cell cultures.

Funder

Russian Foundation of Basic Research

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference50 articles.

1. Uzuegbunam, B.C., Librizzi, D., and Hooshyar Yousefi, B. (2020). PET radiopharmaceuticals for Alzheimer’s disease and Parkinson’s disease diagnosis, the current and future landscape. Molecules, 25.

2. Dopamine visualized in the basal ganglia of living man;Garnett;Nature,1983

3. Current status and future challenges of brain imaging with [18F]-DOPA PET for movement disorders;Calabria;Hell. J. Nucl. Med.,2016

4. Recent advances in PET imaging for evaluation of Parkinson’s disease;Sioka;Eur. J. Nucl. Med. Mol. Imaging.,2010

5. New developments of dopaminergic imaging in Parkinson’s disease;Varrone;Q.J. Nucl. Med. Mol. Imaging.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3