Crystal Structure, Chemical Bond, and Microwave Dielectric Properties of Ba1−xSrx(Zn1/3Nb2/3)O3 Solid Solution Ceramics

Author:

Xiao Lei1,Deng Lianwen2ORCID,Zhang Yu1,Wu Ping1,Zeng Wenfei1,Peng Sen1ORCID

Affiliation:

1. Provincial Key Laboratory of Informational Service for Rural Area of Southwestern Hunan, Shaoyang University, Shaoyang 422000, China

2. School of Physics and Electronics, Central South University, Changsha 410083, China

Abstract

Ba1−xSrx(Zn1/3Nb2/3)O3 (BSZN) perovskite ceramics are prepared using the traditional solid-state reaction method. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to analyze the phase composition, crystal structure, and chemical states of BSZN ceramics, respectively. In addition, the dielectric polarizability, octahedral distortion, complex chemical bond theory, and PVL theory were investigated in detail. Systematic research showed that Sr2+ addition could considerably optimize the microwave dielectric properties of BSZN ceramics. The change in τf value in the negative direction was attributed to oxygen octahedral distortion and bond energy (Eb), and the optimal value of 1.26 ppm/°C was obtained at x = 0.2. The ionic polarizability and density played a decisive role in the dielectric constant, achieving a maximum of 45.25 for the sample with x = 0.2. The full width at half-maximum (FWHM) and lattice energy (Ub) jointly contributed to improving the Q × f value, and a higher Q × f value corresponded to a smaller FWHM value and a larger Ub value. Finally, excellent microwave dielectric properties (εr = 45.25, Q × f = 72,704 GHz, and τf = 1.26 ppm/°C) were obtained for Ba0.8Sr0.2(Zn1/3Nb2/3)O3 ceramics sintered at 1500 °C for 4 h.

Funder

Natural Science Foundation of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Graduate scientific research innovation project of Shaoyang University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3