Tautomeric Equilibrium in 1-Benzamidoisoquinoline Derivatives

Author:

Rybczyński Patryk1ORCID,Kaczmarek-Kędziera Anna1ORCID,Iglesias-Reguant Alex12ORCID,Plażuk Damian3ORCID,Ośmiałowski Borys1ORCID

Affiliation:

1. Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87100 Toruń, Poland

2. Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Spain

3. Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403 Łódź, Poland

Abstract

In this study, the tautomeric equilibrium of a sequence of 1-benzamidoisoquinoline derivatives was investigated with the tools of NMR spectroscopy and computational chemistry. The equilibrium between different tautomers in these systems could be controlled via the substitution effect, and the relative content of the amide form varied from 74% for the strong electron-donating NMe2 substituent to 38% for the strong electron-accepting NO2 group in the phenyl ring. In contrast to the previously investigated 2-phenacylquinoline derivatives, the most stable and thus most abundant tautomer in the 1-benzamidoisoquinoline series except the two most electron-accepting substituents was an amide. The intramolecular hydrogen bond present in the enol tautomer competed with the intermolecular hydrogen bonds created with the solvent molecules and thus was not a sufficient factor to favor this tautomer in the mixture. Although routinely computational studies of tautomeric equilibrium are performed within the continuum solvent models, it is proven here that the inclusion of the explicit solvent is mandatory in order to reproduce the experimental tendencies observed for this type of system, facilitating strong intermolecular hydrogen bonds.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3