Targeting Caspase 8: Using Structural and Ligand-Based Approaches to Identify Potential Leads for the Treatment of Multi-Neurodegenerative Diseases

Author:

Ahmad KhurshidORCID,Balaramnavar Vishal M.,Chaturvedi NavaneetORCID,Khan Saif,Haque ShafiulORCID,Lee Yong-Ho,Choi Inho

Abstract

Caspase 8 is a central player in the apoptotic cell death pathway and is also essential for cytokine processing. The critical role of this protease in cell death pathways has generated research interest because its activation has also been linked with neural cell death. Thus, blocking the activity of caspase 8 is considered a potential therapy for neurodegenerative diseases. To extend the repertoire of caspase 8 inhibitors, we employed several computational approaches to identify potential caspase 8 inhibitors. Based on the structural information of reported inhibitors, we designed several individual and consensus pharmacophore models and then screened the ZINC database, which contains 105,480 compounds. Screening generated 5332 candidates, but after applying stringent criteria only two candidate compounds, ZINC19370490 and ZINC04534268, were evaluated by molecular dynamics simulations and subjected to Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) analysis. These compounds were stable throughout simulations and interacted with targeted protein by forming hydrogen and van der Waal bonds. MM-PBSA analysis showed that these compounds were comparable or better than reported caspase 8 inhibitors. Furthermore, their physical properties were found to be acceptable, and they are non-toxic according to the ADMET online server. We suggest that the inhibitory efficacies of ZINC19370490 and ZINC04534268 be subjected to experimental validation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3