Biogenic Silver Nanoparticles/Mg-Al Layered Double Hydroxides with Peroxidase-like Activity for Mercury Detection and Antibacterial Activity

Author:

Chamanmalik Masira I.1,Antony Arnet Maria1,Yelamaggad C. V.2,Patil Shivaputra A.3,Patil Siddappa A.1ORCID

Affiliation:

1. Centre for Nano and Material Sciences, Jain Global Campus, Jain (Deemed-to-be University), Kanakapura, Bangalore 562112, India

2. Centre for Nano and Soft Matter Sciences, Survey No. 7, Shivanapura, Bangalore 562162, India

3. Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA

Abstract

Over the past decade, the attention of researchers has been drawn to materials with enzyme-like properties to substitute natural enzymes. The ability of nanomaterials to mimic enzymes makes them excellent enzyme mimics; nevertheless, there is a wide berth for improving their activity and providing a platform to heighten their potential. Herein, we report a green and facile route for Tectona grandis leaves extract-assisted synthesis of silver nanoparticles (Ag NPs) decorated on Mg-Al layered double hydroxides (Mg-Al-OH@TGLE-AgNPs) as a nanocatalyst. The Mg-Al-OH@TGLE-AgNPs nanocatalyst was well characterized, and the average crystallite size of the Ag NPs was found to be 7.92 nm. The peroxidase-like activity in the oxidation of o-phenylenediamine in the presence of H2O2 was found to be an intrinsic property of the Mg-Al-OH@TGLE-AgNPs nanocatalyst. In addition, the use of the Mg-Al-OH@TGLE-AgNPs nanocatalyst was extended towards the quantification of Hg2+ ions which showed a wide linearity in the concentration range of 80–400 μM with a limit of detection of 0.2 nM. Additionally, the synergistic medicinal property of Ag NPs and the phytochemicals present in the Tectona grandis leaves extract demonstrated notable antibacterial activity for the Mg-Al-OH@TGLE-AgNPs nanocatalyst against Gram-negative Escherichia coli and Gram-positive Bacillus cereus.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3