Narrow-Linewidth 2 μm All-Fiber Laser Amplifier with a Highly Stable and Precisely Tunable Wavelength for Gas Molecule Absorption in Photonic Crystal Hollow-Core Fibers

Author:

Pei Wenxi,Li Hao,Cui Yulong,Zhou Zhiyue,Wang Meng,Wang Zefeng

Abstract

In recent years, mid-infrared fiber lasers based on gas-filled photonic crystal hollow-core fibers (HCFs) have attracted enormous attention. They provide a potential method for the generation of high-power mid-infrared emissions, particularly beyond 4 μm. However, there are high requirements of the pump for wavelength stability, tunability, laser linewidth, etc., due to the narrow absorption linewidth of gases. Here, we present the use of a narrow-linewidth, high-power fiber laser with a highly stable and precisely tunable wavelength at 2 μm for gas absorption. It was a master oscillator power-amplifier (MOPA) structure, consisting of a narrow-linewidth fiber seed and two stages of Thulium-doped fiber amplifiers (TDFAs). The seed wavelength was very stable and was precisely tuned from 1971.4 to 1971.8 nm by temperature. Both stages of the amplifiers were forward-pumping, and a maximum output power of 24.8 W was obtained, with a slope efficiency of about 50.5%. The measured laser linewidth was much narrower than the gas absorption linewidth and the wavelength stability was validated by HBr gas absorption in HCFs. If the seed is replaced, this MOPA laser can provide a versatile pump source for mid-infrared fiber gas lasers.

Funder

Outstanding Youth Science Fund Project of Hunan Province Natural Science Foundation

National Natural Science Foundation of China

State Key Laboratory of Pulsed Power Laser Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3