Self-Assembled Carbon Metal–Organic Framework Oxides Derived from Two Calcination Temperatures as Anode Material for Lithium-Ion Batteries

Author:

Yang Yang1ORCID,Li Min1,Hu Xiaoqin1

Affiliation:

1. Department of Chemistry, Changzhi University, Changzhi 046000, China

Abstract

Owing to their structural diversity and mesoporous construction, metal–organic frameworks (MOFs) have been used as templates to prepare mesoporous metal oxides, which show excellent performance as anode materials for lithium-ion batteries (LIBs). Co-ZnO/C and Co-Co3O4/C nanohybrids were successfully synthesized based on a precursor of Co-doped MOF-5 by accurately controlling the annealing temperature and atmosphere. Experimental data proved that their electrochemical performance was closely associated with the material phase, especially for Co-ZnO/C, indicating that carbon skeleton materials can maintain a good restoration rate of over 99% after undergoing high-current density cycling. Meanwhile, Co-Co3O4/C nanohybrids showed an exceedingly high reversible capacity of 898 mAh∙g−1 at a current density of 0.1 C after 100 cycles. Their improved coulombic efficiency and superior rate capability contribute to a mesoporous structure, which provides pathways allowing for rapid Li+ diffusion and regulates volume change during charge and discharge processes.

Funder

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi

Basic Research Program of Shanxi Province

Scientific Research Projects of Changzhi University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3