Investigating In Situ Expression of c-MYC and Candidate Ubiquitin-Specific Proteases in DLBCL and Assessment for Peptidyl Disruptor Molecule against c-MYC-USP37 Complex

Author:

Kamran Durr e Sameen12,Hussain Mushtaq2ORCID,Mirza Talat3

Affiliation:

1. Department of Pathology, Dow Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 75330, Pakistan

2. Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan

3. Department of Research, Ziauddin University, Karachi 75000, Pakistan

Abstract

Diffuse Large B-Cell Lymphoma (DLBCL) is the most common form of non-Hodgkin’s lymphoma (NHL). Elevated expression of c-MYC in DLBCL is associated with poor prognosis of the disease. In different cancers, c-MYC has been found regulated by different ubiquitin-specific proteases (USPs), but to date, the role of USPs in c-MYC regulation has not been investigated in DLBCL. In this study, in situ co expression of c-MYC and three candidates USPs, USP28, USP36 and USP37, have been investigated in both the ABC and GCB subtypes of DLBCL. This shows that USP37 expression is positively correlated with the c-MYC expression in the ABC subtype of DLBCL. Structurally, both c-MYC and USP37 has shown large proportion of intrinsically disordered regions, minimizing their chances for full structure crystallization. Peptide array and docking simulations has shown that N-terminal region of c-MYC interacts directly with residues within and in proximity of catalytically active C19 domain of the USP37. Given the structural properties of the interaction sites in the c-MYC-USP37 complex, a peptidyl inhibitor has been designed. Molecular docking has shown that the peptide fits well in the targeted site of c-MYC, masking most of its residues involved in the binding with USP37. The findings could further be exploited to develop therapeutic interventions against the ABC subtype of DLBCL.

Funder

Higher Education Commission

Vice Chancellor Seed Funding Initiative

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3