Controllable La Deficiency Engineering within Perovskite Oxides for Enhanced Overall Water Splitting

Author:

Xu Xiaohu1,Guo Kaiwei1,Yu Xinyue1

Affiliation:

1. College of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China

Abstract

Recently, perovskite (ABO3) nanomaterials have been widely explored as a class of versatile electrocatalysts for oxygen evolution reactions (OER) due to their remarkable compositional flexibility and structural tunability, but their poor electrical conductivity hinders hydrogen evolution reaction (HER) activity and further limits the large-scale application of perovskite oxide in overall water splitting (OWS). In this study, hollow-nanotube-structure LaxCo0.4Fe0.6O3−δ (x = 1.0, 0.9, and 0.8) perovskites with superior HER/OER activity were synthesized on nickel-iron alloy foam (denoted LaxCoFe/NFF) using hydrothermal with a subsequent calcination strategy. Among them, La0.9CoFe/NFF not only exhibited extraordinary HER electrocatalytic performance (160.5 mV@10 mA cm−2 and 241.0 mV@100 mA cm−2) and stability (20 h@10 mA cm−2), but also displayed significant OER electrocatalytic activity (234.7 mV@10 mA cm−2 and 296.1 mV@100 mA cm−2) and durability (20 h@10 mA cm−2), outperforming many recently reported HER/OER perovskite catalysts. The increase in oxygen vacancies caused by the introduction of La deficiency leads to the expansion of the lattice, which greatly accelerates the HER/OER process of La0.9CoFe/NFF. Additionally, the naturally porous skeleton can prevent catalysts from aggregating as well as delay the corrosion and dissolution of catalysts in the electrolyte under high applied potentials. Furthermore, the assembled two-electrode configuration, utilizing La0.9CoFe/NFF (cathode and anode) electrodes, only requires a low cell voltage of 1.573 V at 10 mA cm−2 for robust alkaline OWS, accompanied by remarkable durability over 20 h. This work provides inspiration for the design and preparation of high-performance and stable bifunctional perovskite electrocatalysts for OWS.

Funder

National Natural Science Foundation of China

Applied and Basic Research Program of Shanxi Province

Innovation Project of Graduate Education in Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3