Effects of Ti3C2Tx MXene Addition to a Co Complex/Ionic Liquid-Based Electrolyte on the Photovoltaic Performance of Solar Cells

Author:

Gu Ju Hee1,Park Dongho1,Jung Kyung-Hye1ORCID,Lee Byung Chul1,Han Yoon Soo1ORCID

Affiliation:

1. Department of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan 38430, Republic of Korea

Abstract

Redox mediators comprising I−, Co3+, and Ti3C2Tx MXene were applied to dye-sensitized solar cells (DSCs). In the as-prepared DSCs (I-DSCs), wherein hole conduction occurred via the redox reaction of I−/I3− ions, the power conversion efficiency (PCE) was not altered by the addition of Ti3C2Tx MXene. The I-DSCs were exposed to light to produce Co2+/Co3+-based cells (Co-DSCs), wherein the holes were transferred via the redox reaction of Co2+/Co3+ ions. A PCE of 9.01% was achieved in a Co-DSC with Ti3C2Tx MXene (Ti3C2Tx-Co-DSC), which indicated an improvement from the PCE of a bare Co-DSC without Ti3C2Tx MXene (7.27%). It was also found that the presence of Ti3C2Tx MXene in the redox mediator increased the hole collection, dye regeneration, and electron injection efficiencies of the Ti3C2Tx-Co-DSC, leading to an improvement in both the short-circuit current and the PCE when compared with those of the bare Co-DSC without MXene.

Funder

Korean government

Ministry of Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3