Abstract
Phytophthora capsici Leonian causes destructive economical losses in pepper production,and a promising source of natural fungicides- Helianthus tuberosus leaves was reported. The antifungal activities of different extracts and compounds from H. tuberosus leaves against the phytopathogen, P. capsici Leonian, were examined by chemometric analysis, including HPLC-MS/MS and multivariate data analyses. Principal component analysis and orthogonal partial least squares-discriminate analysis were applied to examine the four groups of H. tuberosus leaves samples, including crude extracts obtained by different methods, including refluxing, macerating, and refluxing under vacuum; four fractions, namely, petroleum ether(PE), chloroform (Chl), ethyl acetate(EA), and n-butanol (NB) fractions; the samples of three H. tuberosus cultivars; and the samples at three growth stages of cultivar Nan Yu. The phenolics contents were categorized based on 3,5-Dicaffeoylquinic acid (3,5-DiCQA), 1,5-Dicaffeoylquinic acid (1,5-DiCQA), 3-O-Caffeoylquinic acid (3-CQA), and 4,5-Dicaffeoylquinic acid (4,5-DiCQA), which were predominant in all the samples. Antifungal activity assay revealed that Chl and NB fractions were more active against P. capsici Leonian with lower IC50(half of maximal inhibitory concentration) values, whereas partial least squares-discriminate analysis suggested caffeoylquinic acid isomer(4-CQA), methyl-quercetin glycoside(MQG), and caffeic acid(CA) might be the main active components in H. tuberosus leaves against P. capsici Leonian. Furthermore, microscopic evaluation demonstrated structural deformities in P. capsici Leonian treated with Chl and NB fractions, indicating the antifungal effects of H. tuberosus leaves. These results imply that H. tuberosus leaves with a high concentration of phenolics might be a promising source of natural fungicides.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献