Abstract
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.
Funder
European Regional Development Fund
European Social Fund
Graduate School BuildMoNa
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献