Affiliation:
1. Department of Chemical and Biochemical Engineering, The Technical University of Denmark, Soeltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
Abstract
(1) Background: Microbial conversion of gaseous molecules, such as CO2, CO and H2, to valuable compounds, has come to the forefront since the beginning of the 21st century due to increasing environmental concerns and the necessity to develop alternative technologies that contribute to a fast transition to a more sustainable era. Research efforts so far have focused on C1–C2 molecules, i.e., ethanol and methane, while interest in molecules with higher carbon atoms has also started to emerge. Research efforts have already started to pay off, and industrial installments on ethanol production from steel-mill off-gases as well as methane production from the CO2 generated in biogas plants are a reality. (2) Methodology: The present study addresses C4–C6 acids and butanol as target molecules and responds to how the inherent metabolic potential of mixed microbial consortia could be revealed and exploited based on the application of different enrichment methods (3) Results and Conclusions: In most of the enrichment series, the yield of C4–C6 acids was enhanced with supplementation of acetic acid and ethanol together with the gas substrates, resulting in a maximum of 43 and 68% (e-mol basis) for butyric and caproic acid, respectively. Butanol formation was also enhanced, to a lesser degree though and up to 9% (e-mol basis). Furthermore, the microbial community exhibited significant shifts depending on the enrichment conditions applied, implying that a more profound microbial analysis on the species level taxonomy combined with the development of minimal co-cultures could set the basis for discovering new microbial co-cultures and/or co-culturing schemes.
Funder
Novo Nordisk Foundation within the framework of the Fermentation-based Biomanufacturing Initiative
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献