Simultaneous Determination of Escitalopram Impurities including the R-enantiomer on a Cellulose tris(3,5-Dimethylphenylcarbamate)-Based Chiral Column in Reversed-Phase Mode

Author:

Szabó Zoltán-IstvánORCID,Bartalis-Fábián Ágnes,Tóth GergőORCID

Abstract

A high-performance liquid chromatographic method was developed for the simultaneous determination of the related substances—three potential synthesis-related chemical impurities and the distomer—of escitalopram. The separation capacity of seven different polysaccharide-type chiral columns, including three amylose-based (Lux Amylose-1, Lux i-Amylose-1, Lux Amylose-2) and four cellulose-based columns (Lux Cellulose-1, Lux Cellulose-2, Lux Cellulose-3, and Lux Cellulose-4) were screened in the polar organic and reversed-phase modes. Lux Cellulose-1, based on cellulose tris(3,5-dimethylphenylcarbamate) as the chiral selector with an acetonitrile-water mixture containing 0.1% diethylamine was identified as the most promising separation system. Using the “one factor at a time” optimization approach, the effect of column temperature, flow rate, and mobile phase constituents on separation performance was evaluated, and the critical resolution values were determined. A U-shaped retention pattern was obtained when plotting the retention factors of the citalopram enantiomers versus the water content of the binary mobile phases on the Lux Cellulose-1 column. A thermodynamic analysis revealed enthalpy-driven enantioseparation in both the polar organic and reversed-phase modes. For further method optimizations, an L9 orthogonal array table was employed. Using the optimized parameters (Lux Cellulose-1 column with 0.1% (v/v) diethylamine in water/acetonitrile 55/45 (v/v); 0.8 mL/min flow rate at 25 °C), baseline separations were achieved between all compounds. Our newly developed HPLC method was validated according to the ICH guidelines and its application was tested with a commercially available pharmaceutical formulation. The method proved to be suitable for routine quality control of related substances and the enantiomeric purity of escitalopram.

Funder

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

Bolyai + New National Excellence Program of the Ministry for Innovation and Technology

University of Medicine, Pharmacy, Science and Technology, George Emil Palade of Târgu Mureș Research

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3