Computational Quantification of the Zwitterionic/Quinoid Ratio of Phenolate Dyes for Their Solvatochromic Prediction

Author:

Aracena Andrés,Domínguez Moisés

Abstract

Solvatochromic dyes are utilized in various chemical and biological media as chemical sensors. Unfortunately, there is no simple way to predict the type of solvatochromism based on the structure of the dye alone, which restricts their design and synthesis. The most important family of solvatochromic sensors, pyridinium phenolate dyes, has the strongest solvatochromism. Using a natural population analysis (NPA) of the natural bond orbitals (NBO) of the phenolate group in the frontier molecular orbitals, it is possible to calculate the relative polarity of the ground state and excited state and, thus to develop a model that can predict the three types of solvatochromism observed for this family: negative, positive, and inverted. This methodology has been applied to thirteen representative examples from the literature. Our results demonstrate that the difference in the electron density of the phenolate moiety in the frontier molecular orbitals is a simple and inexpensive theoretical indicator for calculating the relative polarity of the ground and excited states of a representative library of pyridinium phenolate sensors, and thus predicting their solvatochromism. Comparing the results with the bond length alternation (BLA) and bond order alternation (BOA) indices showed that the NPA/NBO method is a better way to predict solvatochromic behavior.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3