Transcriptomics, Cheminformatics, and Systems Pharmacology Strategies Unveil the Potential Bioactives to Combat COVID-19

Author:

Adarshan SivakumarORCID,Akassh Sakthivel,Avinash Krishnakumar,Bharathkumar Mathivanan,Muthuramalingam PandiyanORCID,Shin HyunsukORCID,Baskar Venkidasamy,Chen Jen-TsungORCID,Bhuvaneshwari VeluswamyORCID,Ramesh ManikandanORCID

Abstract

Coronavirus disease (COVID-19) is a viral disease caused by the SARS-CoV-2 virus and is becoming a global threat again because of the higher transmission rate and lack of proper therapeutics as well as the rapid mutations in the genetic pattern of SARS-CoV-2. Despite vaccinations, the prevalence and recurrence of this infection are still on the rise, which urges the identification of potential global therapeutics for a complete cure. Plant-based alternative medicine is becoming popular worldwide because of its higher efficiency and minimal side effects. Yet, identifying the potential medicinal plants and formulating a plant-based medicine is still a bottleneck. Hence, in this study, the systems pharmacology, transcriptomics, and cheminformatics approaches were employed to uncover the multi-targeted mechanisms and to screen the potential phytocompounds from significant medicinal plants to treat COVID-19. These approaches have identified 30 unique COVID-19 human immune genes targeted by the 25 phytocompounds present in four selected ethnobotanical plants. Differential and co-expression profiling and pathway enrichment analyses delineate the molecular signaling and immune functional regulations of the COVID-19 unique genes. In addition, the credibility of these compounds was analyzed by the pharmacological features. The current holistic finding is the first to explore whether the identified potential bioactives could reform into a drug candidate to treat COVID-19. Furthermore, the molecular docking analysis was employed to identify the important bioactive compounds; thus, an ultimately significant medicinal plant was also determined. However, further laboratory evaluation and clinical validation are required to determine the efficiency of a therapeutic formulation against COVID-19.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3