Abstract
In silico evaluation of various regioisomeric 5- and 3-hydroxy-substituted alkyl 1-aryl-1H-pyrazole-4-carboxylates and their acyclic precursors yielded promising results with respect to their binding in the active site of dihydroorotate dehydrogenase of Plasmodium falciparum (PfDHODH). Consequently, four ethyl 1-aryl-5-hydroxy-1H-pyrazole-4-carboxylates and their 3-hydroxy regioisomers were prepared by two-step syntheses via enaminone-type reagents or key intermediates. The synthesis of 5-hydroxy-1H-pyrazoles was carried out using the literature protocol comprising acid-catalyzed transamination of diethyl [(dimethylamino)methylene]malonate with arylhydrazines followed by base-catalyzed cyclization of the intermediate hydrazones. For the synthesis of isomeric methyl 1-aryl-3-hydroxy-1H-pyrazole-4-carboxylates, a novel two-step synthesis was developed. It comprises acylation of hydrazines with methyl malonyl chloride followed by cyclization of the hydrazines with tert-butoxy-bis(dimethylamino)methane. Testing the pyrazole derivatives for the inhibition of PfDHODH showed that 1-(naphthalene-2-yl)-5-hydroxy-1H-pyrazole-4-carboxylate and 1-(naphthalene-2-yl)-, 1-(2,4,6-trichlorophenyl)-, and 1-[4-(trifluoromethyl)phenyl]-3-hydroxy-1H-pyrazole-4-carboxylates (~30% inhibition) were slightly more potent than a known inhibitor, diethyl α-{[(1H-indazol-5-yl)amino]methylidene}malonate (19% inhibition).
Funder
Slovenian Research Agency
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献