Deep Eutectic Solvent-Based Ultrahigh Pressure Extraction of Baicalin from Scutellaria baicalensis Georgi

Author:

Wang Hui,Ma Xiaodi,Cheng Qibin,Wang Li,Zhang Liwei

Abstract

Deep eutectic solvents (DESs), promising green solvents, and ultrahigh pressure extraction (UPE) as an effective auxiliary extraction method, have attracted wide attention. In this study, DES was coupled with UPE to efficiently extract baicalin from Scutellaria baicalensis Georgi. First, choline chloride: lactic acid (ChCl-LA, molar ratio 1:1) was selected as the most appropriate DES by comparing the extraction yield of different DESs. Second, the extraction protocol was optimized by response surface methodology (RSM) considering the impacts of ChCl-LA concentration, extraction pressure, extraction time and liquid-solid ratio on the extraction yield. Under the optimal condition (40 vol% water content, extraction pressure of 400 MPa, extraction time of 4 min and a liquid-solid ratio of 110 mL/g), a maximum yield of 116.8 mg/g was achieved, higher than that obtained by the traditional extraction method. The microstructure of the raw and extracted Scutellaria baicalensis Georgi samples according to scanning electron microscope (SEM) images revealed that the dissolution of chemical components was enhanced from the disrupted root tissues after DESs-UPE. DESs coupled with UPE could effectively extract the baicalin from Scutellaria baicalensis Georgi as a rapid and efficient extraction method.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference44 articles.

1. Process Optimization for Ultra-High-Pressure Extraction of Tea Polyphenols;Zeng;Food Sci.,2011

2. Study on Optimum Process for Ultra High-Pressure Extraction Caffetannic Acid from Chrysanthemum morifolium Ramat;Qin;Hubei Agric. Sci.,2010

3. Separation of major catechins from green tea by ultrahigh pressure extraction;Xi;Int. J. Pharm.,2010

4. Extraction of Stevioside from Stevia by Ultrahigh Pressure Technique;Li;Mod. Food Sci. Technol.,2010

5. Study of extract flavonoids from Lonicera japonica Thunb by ultrahigh pressure method;Zong;Food Res. Dev.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3