Influence of Polytetrafluoroethylene Content, Compaction Pressure, and Annealing Treatment on the Magnetic Properties of Iron-Based Soft Magnetic Composites

Author:

Song Mei12,Luo Fan12,Shang Yajing12ORCID,Duan Zhongxia123

Affiliation:

1. Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China

2. Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan 250101, China

3. University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China

Abstract

To improve the magnetic properties of iron-based soft magnetic composites (SMCs), polytetrafluoroethylene (PTFE) with excellent heat resistance, electrical insulation, and extremely high electrical resistivity was chosen as an insulating coating material for the preparation of iron-based SMCs. The effects of PTFE content, compaction pressure, and annealing treatment on the magnetic properties of Fe/PTFE SMCs were investigated in detail. The results demonstrate that the PTFE insulating layer is successfully coated on the surface of iron powders, which effectively reduces the core loss, increases the resistivity, and improves the frequency stability and the quality factor. Under the combined effect of optimal PTFE content, compaction pressure, and annealing treatment, the iron-based SMCs exhibit a high effective permeability of 56, high saturation magnetization of 192.9 emu/g, and low total core losses of 355 mW/cm3 and 1705 mW/cm3 at 50 kHz for Bm = 50 mT and 100 mT. This work provides a novel insulating coating layer that optimizes magnetic properties and is advantageous for the development of iron-based SMCs. In addition, it also provides a comprehensive understanding of the relationship between process parameters and magnetic properties, which is of great guiding significance for scientific research and industrial production.

Funder

Beijing Municipal Science and Technology Commission Huairou Science City Achievement Landing Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3