Multi-Armed 1,2,3-Selenadiazole and 1,2,3-Thiadiazole Benzene Derivatives as Novel Glyoxalase-I Inhibitors

Author:

Al-Balas Qosay A.ORCID,Al-Smadi Mousa L.,Hassan Mohammad A.,Al Jabal Ghazi A.,Almaaytah Ammar M.ORCID,Alzoubi Karem H.ORCID

Abstract

Glyoxalase-I (Glo-I) enzyme was established to be a valid target for anticancer drug design. It performs the essential detoxification step of harmful byproducts, especially methylglyoxal. A robust computer-aided drug design approach was used to design and validate a series of compounds with selenium or sulfur based heterorings. A series of in-house multi-armed 1,2,3-selenadiazole and 1,2,3-thiadiazole benzene derivatives were tested for their Glo-I inhibitory activity. Results showed that these compounds bind Glo-I active sites competitively with strong potential to inhibit this enzyme with IC50 values in micro-molar concentration. Docking poses revealed that these compounds interact with the zinc atom at the bottom of the active site, which plays an essential role in its viability.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3