Author:
Takiguchi Yuji,Onami Yuika,Haraguchi Tomoyuki,Akitsu Takashiro
Abstract
The crystal structures of two azobenzene derivative Schiff base metal complexes (new C44H40CuN6O2 of P-1 and known C44H38MnN6O7 of P21/c abbreviated as Cu and Mn, respectively) were (re-)determined experimentally using conventional X-ray analysis to obtain electron density using a PLATON program. Cu affords a four-coordinated square planar geometry, while Mn affords a hexa-coordinated distorted octahedral geometry whose apical sites are occupied by an acetate ion and water ligands, which are associated with hydrogen bonds. The π-π or CH-π and hydrogen bonding intermolecular interactions were found in both crystals, which were also analyzed using a Hirshfeld surface analysis program. To compare these results with experimental results, a density functional theory (DFT) calculation was also carried out based on the crystal structures to obtain calculated electron density using a conventional Gaussian program. These results revealed that the axial Mn-O coordination bonds of Mn were relatively weaker than the in-plane M-N or M-O coordination bonds.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献