Mechanistic Study on the Possibility of Converting Dissociated Oxygen into Formic Acid on χ-Fe5C2(510) for Resource Recovery in Fischer–Tropsch Synthesis

Author:

Ai Ning123ORCID,Lai Changyi12,Hu Wanpeng2,Wang Qining3ORCID,Ren Jie24

Affiliation:

1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China

3. National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Zhejiang University of Technology, Hangzhou 310014, China

4. Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China

Abstract

During Fischer–Tropsch synthesis, O atoms are dissociated on the surface of Fe-based catalysts. However, most of the dissociated O would be removed as H2O or CO2, which results in a low atom economy. Hence, a comprehensive study of the O removal pathway as formic acid has been investigated using the combination of density functional theory (DFT) and kinetic Monte Carlo (kMC) to improve the economics of Fischer–Tropsch synthesis on Fe-based catalysts. The results show that the optimal pathway for the removal of dissociated O as formic acid is the OH pathway, of which the effective barrier energy (0.936 eV) is close to that of the CO activation pathway (0.730 eV), meaning that the removal of dissociated O as formic acid is possible. The main factor in an inability to form formic acid is the competition between the formic acid formation pathway and other oxygenated compound formation pathways (H2O, CO2, methanol-formaldehyde); the details are as follows: 1. If the CO is hydrogenated first, then the subsequent reaction would be impossible due to its high effective Gibbs barrier energy. 2. If CO reacts first with O to become CO2, it is difficult for it to be hydrogenated further to become HCOOH because of the low adsorption energy of CO2. 3. When the CO + OH pathway is considered, OH would react easily with H atoms to form H2O due to the hydrogen coverage effect. Finally, the removal of dissociated O to formic acid is proposed via improving the catalyst to increase the CO2 adsorption energy or CO coverage.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3