A Study of the Micellar Formation of N-Alkyl Betaine Ethyl Ester Chlorides Based on the Physicochemical Properties of Their Aqueous Solutions

Author:

Geppert-Rybczyńska Monika1ORCID,Mrozek-Wilczkiewicz Anna23ORCID,Rawicka Patrycja2ORCID,Bartczak Piotr4ORCID

Affiliation:

1. Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

2. August Chełkowski Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland

3. Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

4. Centre for Materials and Drug Discovery, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

Abstract

In this study, a series of four surface-active compounds—N-alkyl betaine ethyl ester chlorides, CnBetC2Cl—were synthesized and characterized in aqueous solutions. As with other alkyl betaines, these amphiphiles can be practically used, for example, as co-surfactants and/or solubility enhancers acting according to hydrotropic or micellar mechanisms, depending on the alkyl chain length in the amine. We focused on the representatives of the medium alkyl chain length (C6–C12) to find the dependence between the alkyl chain length in N-alkyl betaine ethyl ester chlorides and the surface, volumetric, acoustic, and viscometric properties of their solutions. Ethyl esters, the derivatives of amino acids, were chosen to increase functionality and take advantage of possible hydrolysis in solutions at higher pH, which is also a key parameter in biodegradability. The micellization parameters were calculated based on the physicochemical characteristics. We focused our interest on the ester with a dodecyl substituent since we can compare and discuss its properties with some other C12 representatives that are available in literature. Surprisingly, its micellization characteristic is almost temperature-independent in the investigated temperature range, t = (15–45) °C. Particularly interesting are the results of dynamic light scattering (DLS), which show that the changes in physicochemical parameters of the C12 homolog around the CMC are caused by the two types of micelles of different sizes present in solutions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3