Probing the Interfacial Behavior of Type IIIa Binary Mixtures Along the Three-Phase Line Employing Molecular Thermodynamics

Author:

Alonso Gerard,Chaparro Gustavo,Cartes Marcela,Müller Erich A.ORCID,Mejía AndrésORCID

Abstract

Interfacial properties such as interfacial profiles, surface activity, wetting transitions, and interfacial tensions along the three-phase line are described for a Type IIIa binary mixture. The methodological approach combines the square gradient theory coupled to the statistical associating fluid theory for Mie potentials of variable range, and coarse-grained molecular dynamics simulations using the same underlying potential. The water + n-hexane mixture at three-phase equilibrium is chosen as a benchmark test case. The results show that the use of the same molecular representation for both the theory and the simulations provides a complementary picture of the aforementioned mixture, with an excellent agreement between the molecular models and the available experimental data. Interfacial tension calculations are extended to temperatures where experimental data are not available. From these extrapolations, it is possible to infer a first order wetting transition at 347.2 K, where hexane starts to completely wet the water/vapor interface. Similarly, the upper critical end point is estimated at 486.3 K. Both results show a very good agreement to the available experimental information. The concentration profiles confirm the wetting behavior of n-hexane along with a strong positive surface activity that increases with temperature, contrasting the weak positive surface activity of water that decreases with temperature.

Funder

FONDECYT

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference42 articles.

1. Critical lines and phase equilibria in binary van der Waals mixtures;Van Konynenburg;Philos. Trans. R. Soc.,1980

2. Phase Equilibrium Behavior in Water (1) + n-Alkane (2) Mixtures

3. Phase behavior of n-alkanes in supercritical solution: A Monte Carlo study

4. Interface properties and bubble nucleation in compressible mixtures containing polymers

5. Molecular Theory of Capillarity;Rowlinson,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3