Evaluation of Efficiency of Polymerization, Surface Roughness, Porosity and Adaptation of Flowable and Sculptable Bulk Fill Composite Resins

Author:

Gjorgievska Elizabeta,Oh Daniel S.ORCID,Haam Daewon,Gabric DraganaORCID,Coleman Nichola J.

Abstract

A new category of commercial bulk fill composite resins (CRs) enables the placement of 4-mm-thick layers as an alternative to the traditional time-consuming incremental technique. The purpose of the present study was to compare the efficiency of the polymerization, adaptation and porosity of two high-viscosity ‘sculptable’ bulk fill CRs (Filtek™ Bulk Fill (3M™ ESPE, St. Paul, MN, USA) and Tetric EvoCeram® Bulk Fill (Ivoclar Vivadent AG, Schwan, Liechtenstein)) and two low-viscosity ‘flowable’ bulk fill CRs (SureFil® SDR™ flow (Dentsply Sirona, Charlotte, NC, USA) and Tetric EvoFlow® Bulk Fill (Ivoclar Vivadent AG, Schaan, Liechtenstein)). Cylindrical samples of the bulk fill CRs (4 mm height × 10 mm diameter) were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Additionally, occlusal cavities were prepared in twelve extracted human molars and restored with the bulk fill CRs (n = 3 for each CR). The adaptation and porosity of the bulk fill CRs were evaluated by X-ray microcomputed tomography (µCT) with a 3D morphometric analysis, and the adaptation was also analyzed by scanning electron microscopy (SEM) on longitudinal vestibulo-oral sections of the restored teeth. The AFM analysis demonstrated that the surface roughness of the SureFil® SDR™ flow was higher than that of the Tetric EvoFlow® Bulk Fill and that the surface roughness of Filtek™ Bulk Fill was higher than that of Tetric EvoCeram® Bulk Fill. µCT and SEM confirmed that the flowable bulk fill CRs had excellent adaptation to the cavity walls. The 3D morphometric analysis showed the highest and lowest degrees of porosity in Filtek™ Bulk Fill and Tetric EvoFlow® Bulk Fill, respectively. In general, the flowable bulk fill CRs exhibited better adaptation, a higher efficiency of polymerization and lower porosity than the sculptable materials.

Funder

Fulbright Association

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3