Gas Phase Conformation of Trisaccharides and Core Pentasaccharide: A Three-Step Tree-Based Sampling and Quantum Mechanical Computational Approach

Author:

Chen Dong1,Gao Jianming1,Zheng Danting1,Guo Zhiheng1,Zhao Zuncheng12

Affiliation:

1. School of Physics and Electronics, Henan University, Kaifeng 475004, China

2. Henan Province Engineering Research Center of Metal Matrix in situ Composites Based on Aluminum, Magnesium or Copper, Henan University, Kaifeng 475004, China

Abstract

As an important component of N-linked glycoproteins, the core pentasaccharide is highly crucial to the potential application prospect of glycoprotein. However, the gas phase conformation study is a challenging one due to the size and complexity of the molecule, together with the necessity to rely on quantum chemistry modeling for relevant energetics and structures. In this paper, the structures of the trisaccharides and core pentasaccharides in N-linked glycans in the gas phase were constructed by a three-step tree-based (TSTB) sampling. Since single point energies of all the conformers are calculated at the temperature of zero, it is necessary to evaluate the stability at a high temperature. We calculate the Gibbs free energies using the standard thermochemistry model (T = 298.15 K). For trimannose, the energetic ordering at 298.15 K can be strongly changed compared to 0 K. Moreover, two structures of trimannose with high energies at 0 K are considered to provide a much better match of IR vibration signatures with the low Gibbs free energies. On this basis, the core pentasaccharide was constructed in three ways. The building configurations of core pentasaccharide were optimized to obtain reasonable low-energy stable conformers. Fortunately, the lowest-energy structure of core pentasaccharide is eventually the minimum at 0 K and 298.15 K. Furthermore, spectrum analysis of core pentasaccharide was carried out. Although poorly resolved, its contour from the experiment was in qualitative correspondence with the computed IR spectrum associated with its minimum free energy structure. A large number of strongly and weakly hydrogen-bonded hydroxyl and acetylamino groups contribute to a highly congested set of overlapping bands. Compared with traditional conformation generators, the TSTB sampling is employed to efficiently and comprehensively obtain preferred conformers of larger saccharides with lower energy.

Funder

Natural Science Foundation of Henan Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3