Preparation of Sulfonated Poly(arylene ether)/SiO2 Composite Membranes with Enhanced Proton Selectivity for Vanadium Redox Flow Batteries

Author:

Ye Zhoulin1,Chen Nanjie1,Zheng Zigui1,Xiong Lei1,Chen Dongyang1ORCID

Affiliation:

1. School of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China

Abstract

Proton exchange membranes (PEMs) are an important type of vanadium redox flow battery (VRFB) separator that play the key role of separating positive and negative electrolytes while transporting protons. In order to lower the vanadium ion permeability and improve the proton selectivity of PEMs for enhancing the Coulombic efficiency of VRFBs, herein, various amounts of nano-sized SiO2 particles were introduced into a previously optimized sulfonated poly(arylene ether) (SPAE) PEMs through the acid-catalyzed sol-gel reaction of tetraethyl orthosilicate (TEOS). The successful incorporation of SiO2 was confirmed by FT-IR spectra. The scanning electron microscopy (SEM) images revealed that the SiO2 particles were well distributed in the SPAE membrane. The ion exchange capacity, water uptake, and swelling ratio of the PEMs were decreased with the increasing amount of SiO2, while the mechanical properties and thermal stability were improved significantly. The proton conductivity was reduced gradually from 93.4 to 76.9 mS cm−1 at room temperature as the loading amount of SiO2 was increased from 0 to 16 wt.%; however, the VO2+ permeability was decreased dramatically after the incorporation of SiO2 and reached a minimum value of 2.57 × 10−12 m2 s−1 at 12 wt.% of SiO2. As a result, the H+/VO2+ selectivity achieved a maximum value of 51.82 S min cm−3 for the composite PEM containing 12 wt.% of SiO2. This study demonstrates that the properties of PEMs can be largely tuned by the introduction of SiO2 with low cost for VRFB applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3