Insulating Material with Scale Components for High-Temperature and High-Pressure Water Applications

Author:

Zhao Xiaoqiang1,Lou Zongyong1,Gao Yide1,Feng Wenhui1,Wang Dong2,He Xiao1

Affiliation:

1. Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, China

2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Accurately measuring water holdup in horizontal wells is crucial for effectively using heavy oil reservoirs. The capacitance method is among the most widely used and accurate techniques. However, the absence of suitable insulating materials at high temperatures and pressures limits the effectiveness of capacitive water holdup measurement in heavy oil thermal recovery. This study introduces a new composite material based on an aviation-grade, special glass glaze as the insulating medium doped with inorganic components (CaSO4, MgSO4, Ca(OH)2, and SiO2). This new composite material demonstrates outstanding insulating performance under high-temperature and high-pressure conditions in water. A water environment with a high temperature of 350 °C and a pressure of 12 MPa considerably enhances the composite material’s insulation. After 72 h of continuous use, the insulation performance remains 0.3 MΩ. The layers exhibit improved insulation and stability, maintaining integrity through five consecutive temperature shocks in 500 °C air and 20 °C water. XRD, IR, SEM, and TEM analyses reveal that the new composite material is amorphous after firing and that the addition of inorganic components improves the bonding between the glass glaze components and contributes to a denser structure. Simultaneously, SEM and TEM analyses indicate that adding inorganic components results in a smoother, crack-free, and more compact surface of the special glass glaze. This enhancement is crucial for the material’s long-term stability in high-temperature and high-pressure water environments.

Funder

Colleges and universities in Hebei province science and technology research project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3