Genome-Wide Identification and Characterization of TCP Gene Family Members in Melastoma candidum

Author:

Li Hui,Wen Xiaoxia,Huang Xiong,Wei Mingke,Chen Hongpeng,Yu YixunORCID,Dai Seping

Abstract

It has been confirmed that the plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) gene family plays a pivotal role during plant growth and development. M. candidum is a native ornamental species and has a wide range of pharmacodynamic effects. However, there is still a lack of research on TCP’s role in controlling M. candidum’s development, abiotic stress responses and hormone metabolism. A comprehensive description of the TCP gene family in M. candidum is urgently needed. In this study, we used the HMMER search method in conjunction with the BLASTp method to identify the members of the TCP gene family, and a total of 35 TCP genes were identified. A domain analysis further confirmed that all 35 TCPs contained a TCP superfamily, a characteristic involved in dimerization and DNA binding that can be found in most genes from this gene family, suggesting that our identification was effective. As a result of the domain conservation analysis, the 35 TCP genes could be classified into two classes, TCP-P and TCP-C, based on the conservative regions of 55 and 59 amino acids, respectively. Gene-duplication analysis revealed that most TCP genes were present in duplication events that eventually led to TCP gene expansion in M. candidum. All the detected gene pairs had a Ka/Ks value of less than one, suggesting that purification selection is the most important factor that influences the evolution of TCP genes. Phylogenetic analysis of three species displayed the evolutionary relationship of TCP genes across different species and further confirmed our results. The real-time quantitative PCR (qRT-PCR) results showed that McTCP2a, McTCP7a, McTCP10, McTCP11, McTCP12a, McTCP13, McTCP16, McTCP17, McTCP18, McTCP20 and McTCP21 may be involved in leaf development; McTCP4a, McTCP1, McTCP14, McTCP17, McTCP18, McTCP20, McTCP22 and McTCP24 may be involved in flower development; and McTCP2a, McTCP3, McTCP5a, McTCP6, McTCP7a, McTCP9, McTCP11, McTCP14 and McTCP16 may be involved in seed development. Our results dissect the TCP gene family across the genome of M. candidum and provide valuable information for exploring TCP genes to promote molecular breeding and property improvement of M. candidum in the future.

Funder

Guangzhou Ecological Garden Science & Technology Collaborative Innovation Center

Funding of scientific research projects for postdoctor

Improved Varieties Breeding and High-efficiency Cultivation Techniques Research & Demonstration of Traditional Chinese Medicine

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference59 articles.

1. TCP transcription factors: Architectures of plant form;Manassero;Biomol. Concepts,2013

2. The evolution of apical dominance in maize;Doebley;Nature,1997

3. Control of organ asymmetry in flowers of Antirrhinum;Luo;Cell,1999

4. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene;Kosugi;Plant Cell,1997

5. Origin of floral asymmetry in Antirrhinum;Luo;Nature,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3