The Antitumour Activity of a Curcumin and Piperine Loaded iRGD-Modified Liposome: In Vitro and In Vivo Evaluation

Author:

Wang Yingzheng1,Huang Xunhua1,Chen Hanzhi1,Wu Qianyuan1,Zhao Qianqian1,Fu Dezhuang1,Liu Qinghua1,Wang Yinghao1

Affiliation:

1. College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

Abstract

Lung cancer is one of the most common cancers around the world, with a high mortality rate. Despite substantial advancements in diagnoses and therapies, the outlook and survival of patients with lung cancer remains dismal due to drug tolerance and malignant reactions. New interventional treatments urgently need to be explored if natural compounds are to be used to reduce toxicity and adverse effects to meet the needs of lung cancer clinical treatment. An internalizing arginine-glycine-aspartic acid (iRGD) modified by a tumour-piercing peptide liposome (iRGD-LP-CUR-PIP) was developed via co-delivery of curcumin (CUR) and piperine (PIP). Its antitumour efficacy was evaluated and validated via in vivo and in vitro experiments. iRGD-LP-CUR-PIP enhanced tumour targeting and cellular internalisation effectively. In vitro, iRGD-LP-CUR-PIP exhibited enhanced cellular uptake, suppression of tumour cell multiplication and invasion and energy-independent cellular uptake. In vivo, iRGD-LP-CUR-PIP showed high antitumour efficacy, mainly in terms of significant tumour volume reduction and increased weight and spleen index. Data showed that iRGD peptide has active tumour targeting and it significantly improves the penetration and cellular internalisation of tumours in the liposomal system. The use of CUR in combination with PIP can exert synergistic antitumour activity. This study provides a targeted therapeutic system based on natural components to improve antitumour efficacy in lung cancer.

Funder

the Ministry of Science and Technology of Fujian Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3