Effects of Different Opioid Drugs on Oxidative Status and Proteasome Activity in SH-SY5Y Cells

Author:

Rullo LauraORCID,Caputi Francesca Felicia,Losapio Loredana MariaORCID,Morosini CamillaORCID,Posa LucaORCID,Canistro DonatellaORCID,Vivarelli FabioORCID,Romualdi PatriziaORCID,Candeletti SanzioORCID

Abstract

Opioids are the most effective drugs used for the management of moderate to severe pain; however, their chronic use is often associated with numerous adverse effects. Some results indicate the involvement of oxidative stress as well as of proteasome function in the development of some opioid-related side effects including analgesic tolerance, opioid-induced hyperalgesia (OIH) and dependence. Based on the evidence, this study investigated the impact of morphine, buprenorphine or tapentadol on intracellular reactive oxygen species levels (ROS), superoxide dismutase activity/gene expression, as well as β2 and β5 subunit proteasome activity/biosynthesis in SH-SY5Y cells. Results showed that tested opioids differently altered ROS production and SOD activity/biosynthesis. Indeed, the increase in ROS production and the reduction in SOD function elicited by morphine were not shared by the other opioids. Moreover, tested drugs produced distinct changes in β2(trypsin-like) and β5(chymotrypsin-like) proteasome activity and biosynthesis. In fact, while prolonged morphine exposure significantly increased the proteolytic activity of both subunits and β5 mRNA levels, buprenorphine and tapentadol either reduced or did not alter these parameters. These results, showing different actions of the selected opioid drugs on the investigated parameters, suggest that a low µ receptor intrinsic efficacy could be related to a smaller oxidative stress and proteasome activation and could be useful to shed more light on the role of the investigated cellular processes in the occurrence of these opioid drug side effects.

Funder

MIUR

University of Bologna

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3