Comparative Evaluation of Boron Sorption Dynamics on Zeolites in Irrigation Waters: An Isothermal Modeling Approach

Author:

Núñez-Gómez Dámaris1ORCID,Martínez-Nicolás Juan José1ORCID,Legua Pilar1ORCID,Giménez-Valero Carlos1ORCID,Maciá-Vázquez Alejandro Andy1,Melgarejo Pablo1ORCID

Affiliation:

1. Plant Production and Microbiology Department, Miguel Hernandez University (UMH), Ctra. Beniel Km 3.2, 03312 Orihuela, Alicante, Spain

Abstract

Efficient boron removal from irrigation waters is crucial for sustainable agriculture, as elevated levels of boron can be toxic to many plants, limiting growth and crop productivity. In this context, the present study investigated the sorption equilibrium of boron using zeolites in two types of aqueous matrices: a synthetic solution containing only boron and natural irrigation waters. Through the application of various isothermal sorption models (Langmuir, Freundlich, Sips, Toth, Jovanovic, Temkin, Dubinin–Radushkevich, and Redlich–Peterson), the efficacy of zeolite for boron removal under controlled and real conditions was evaluated. The results indicated a notable difference in sorption behavior between the two matrices, reflecting the complexity and heterogeneity of interactions in the boron–zeolite system. In the synthetic solution, the Freundlich model provided the best fit (R2 = 0.9917), suggesting heterogeneous and multilayer sorption, while the Sips model showed high efficacy in describing the sorption in both matrices, evidencing its capability to capture the complex nature of the interaction between boron and zeolite under different environmental conditions. However, in natural irrigation waters, the Jovanovic model demonstrated the most accurate fit (R2 = 0.999), highlighting the importance of physical interactions in boron sorption. These findings underscore the significant influence of the water matrix on the efficacy of zeolite as a boron removal agent, emphasizing the need to consider the specific composition of irrigation water in the design of removal treatments. Additionally, the results stress the importance of selecting the appropriate isothermal model to predict boron sorption behavior, which is crucial for developing effective and sustainable treatment strategies. This study provides a basis for optimizing boron removal in various agricultural and industrial applications, contributing to the design of more efficient and specific water treatment processes.

Funder

European Union NextGenerationEU

Generalitat Valenciana

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3