Abstract
A novel, validated, reversed-phase (RP), chiral high performance liquid chromatography (HPLC) method was developed for the enantiopurity control analysis of naproxen, a frequently used non-steroidal anti-inflammatory agent using polysaccharide-type chiral stationary phase (CSP). In the screening phase of method development, seven columns were tested in polar organic (PO) mode using mobile phases consisting of 0.1% acetic acid in methanol, ethanol, 2-propanol, and acetonitrile. Enantiorecognition was observed only in five cases. The best enantioseparation was observed on a Lux Amylose-1 column with 0.1% (v/v) acetic acid in ethanol with a resolution (Rs) of 1.24. The enantiomer elution order was unfavorable, as the distomer eluted after the eutomer. When the ethanolic mobile phase was supplemented with water, enantiomer elution order reversal was observed, indicating a difference in the enantiorecognition mechanism upon switching from PO to RP mode. Furthermore, by changing ethanol to methanol, not only lower backpressure, but also higher resolution was obtained. Subsequent method optimization was performed using a face-centered central composite design (FCCD) to achieve higher chiral resolution in a shorter analysis time. Optimized parameters offering baseline separation were as follows: Lux Amylose-1 stationary phase, thermostated at 40 °C, and a mobile phase consisting of methanol:water:acetic acid 85:15:0.1 (v/v/v), delivered with 0.65 mL/min flow rate. Using these optimized parameters, a Rs = 3.21 ± 0.03 was achieved within seven minutes. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of different pharmaceutical preparations, such as film-coated tablets and gel, as well as fixed-dose combination tablets, containing both naproxen and esomeprazole.
Funder
Hungarian Academy of Sciences
Excellence in Research by the Semmelweis University School of PhD Studies
Ministry for Innovation and Technology
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献