Thioxanthone-Based Siloxane Photosensitizer for Cationic/Radical Photopolymerization and Photoinduced Sol–Gel Reactions

Author:

Nguyen Thi-Thanh-Tam1,Breloy Louise1,Rios De Anda Agustin1,Hayek Hassan1,Chiappone Annalisa2,Malval Jean-Pierre3,Grande Daniel1ORCID,Versace Davy-Louis1

Affiliation:

1. University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France

2. Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy

3. Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute Alsace, 15 Rue Jean Starcky, 68057 Mulhouse, France

Abstract

In this investigation, a multifunctional visible-light TX-based photosensitizer containing a siloxane moiety (TXS) was designed with a good overall yield of 54%. The addition of a siloxane moiety enabled the incorporation of a TX photosensitizer into a siloxane network by photoinduced sol–gel chemistry, thus avoiding its release. Both liquid 1H and solid-state 29Si NMR measurements undeniably confirmed the formation of photoacids resulting from the photolysis of the TXS/electron acceptor molecule (Iodonium salt), which promoted the photoinduced hydrolysis/condensation of the trimethoxysilane groups of TXS, with a high degree of condensation of its inorganic network. Notably, the laser flash photolysis, fluorescence, and electron paramagnetic resonance spin-trapping (EPR ST) experiments demonstrated that TXS could react with Iod through an electron transfer reaction through its excited states, leading to the formation of radical initiating species. Interestingly, the TXS/Iod was demonstrated to be an efficient photoinitiating system for free-radical (FRP) and cationic (CP) polymerization under LEDs@385, 405, and 455 nm. In particular, whatever the epoxy monomer mixtures used, remarkable final epoxy conversions were achieved up to 100% under air. In this latter case, we demonstrated that both the photoinduced sol–gel process (hydrolysis of trimethoxysilane groups) and the cationic photopolymerization occurred simultaneously.

Funder

UPEC

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3