Molecular Peptide Grafting as a Tool to Create Novel Protein Therapeutics

Author:

Komar Anton A.123ORCID

Affiliation:

1. Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA

2. Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA

3. Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA

Abstract

The study of peptides (synthetic or corresponding to discrete regions of proteins) has facilitated the understanding of protein structure–activity relationships. Short peptides can also be used as powerful therapeutic agents. However, the functional activity of many short peptides is usually substantially lower than that of their parental proteins. This is (as a rule) due to their diminished structural organization, stability, and solubility often leading to an enhanced propensity for aggregation. Several approaches have emerged to overcome these limitations, which are aimed at imposing structural constraints into the backbone and/or sidechains of the therapeutic peptides (such as molecular stapling, peptide backbone circularization and molecular grafting), therefore enforcing their biologically active conformation and thus improving their solubility, stability, and functional activity. This review provides a short summary of approaches aimed at enhancing the biological activity of short functional peptides with a particular focus on the peptide grafting approach, whereby a functional peptide is inserted into a scaffold molecule. Intra-backbone insertions of short therapeutic peptides into scaffold proteins have been shown to enhance their activity and render them a more stable and biologically active conformation.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference91 articles.

1. From fold to function;Moult;Curr. Opin. Struct. Biol.,2000

2. More than the sum of their parts: On the evolution of proteins from peptides;Lupas;BioEssays,2003

3. Protein assembly by design;Zhu;Chem. Rev.,2021

4. Autonomous subdomains in protein folding;Wu;Protein Sci.,1994

5. Favorable domain size in proteins;Xu;Fold. Des.,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3