Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction

Author:

Liu Jia-Wei,Murtada KhaledORCID,Reyes-Garcés Nathaly,Pawliszyn Janusz

Abstract

A systematic evaluation of eight different coatings made of solid phase extraction (SPE) and carbon-based sorbents immobilized with polyacrylonitrile in the thin-film microextraction (TFME) format using LC-MS/MS was described. The investigated coatings included graphene, graphene oxide, multi-walled carbon nanotubes (MWCNTs), carboxylated MWCNTs, as carbon-based coatings, and polystyrene-divinylbenzene (PS-DVB), octadecyl-silica particles (C18), hydrophilic–hydrophobic balance particles (HLB) and phenyl-boronic acid modified particles (PBA), as SPE-based coatings. A total of 24 compounds of diverse moieties and of a wide range of polarities (log P from −2.99 to 6.98) were selected as probes. The investigated coatings were characterized based on their extraction performance toward the selected probes at different pH values and at optimized desorption conditions. In the case of SPE-based coatings, PS-DVB and HLB exhibited a balanced extraction for compounds within a wide range of polarities, and C18 showed superior extraction recoveries for non-polar analytes. Carbon-based coatings showed high affinity for non-polar compounds given that their main driving force for extraction is hydrophobic interactions. Interestingly, among the studied carbon-based coatings, graphene oxide showed the best extraction capabilities toward polar compounds owing to its oxygen-containing groups. Overall, this work provided important insights about the extraction mechanisms and properties of the investigated coatings, facilitating the coating selection when developing new TFME applications.

Funder

Natural Sciences and Engineering Research Council of Canada

China Scholarship Council

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3